

# System Report: Agroforestry with Orange Groves in Crete, Greece

| Project name   | AGFORWARD (613520)                                                           |  |
|----------------|------------------------------------------------------------------------------|--|
| Work-package   | 3: Agroforestry for High Value Trees                                         |  |
| Specific group | Intercropping of Orange Groves in Greece                                     |  |
| Deliverable    | Contribution to Deliverable 3.7 (3.1): Detailed system description of a case |  |
|                | study system                                                                 |  |
| Date of report | January 2016                                                                 |  |
| Authors        | Anastasia Pantera, Andreas Papadopoulos, Maria Kasselaki, Vassilios          |  |
|                | Papanastasis, Konstantinos Mantzanas, George Fotiadis                        |  |
| Contact        | pantera@teiste.gr                                                            |  |
| Reviewed       | Paul Burgess (7 April 2016)                                                  |  |

## Contents

| 1 | Context                           | .2 |
|---|-----------------------------------|----|
| 2 | Background                        | .2 |
| 3 | Update on field measurements      | .2 |
| 4 | Description of system             | .3 |
| 5 | Description of the tree component | .6 |
| 6 | Trial design                      | .7 |
| 7 | Measurements                      | .7 |
| 8 | Acknowledgements                  | .8 |
| 9 | References                        | .8 |
|   |                                   |    |



AGFORWARD (Grant Agreement N° 613520) is co-funded by the European Commission, Directorate General for Research & Innovation, within the 7th Framework Programme of RTD. The views and opinions expressed in this report are purely those of the writers and may not in any circumstances be regarded as stating an official position of the European Commission.

## 1 Context

The AGFORWARD research project (January 2014-December 2017), funded by the European Commission, is promoting agroforestry practices in Europe that will advance sustainable rural development. The project has four objectives:

- 1. to understand the context and extent of agroforestry in Europe,
- 2. to identify, develop and field-test innovations (through participatory research) to improve the benefits and viability of agroforestry systems in Europe,
- 3. to evaluate innovative agroforestry designs and practices at a field-, farm- and landscape scale, and
- 4. to promote the wider adoption of appropriate agroforestry systems in Europe through policy development and dissemination.

This report contributes to Objective 2, Deliverable 3.7: "Detailed system description of case study agroforestry systems". The detailed system description includes the key inputs, flows, and outputs of the key ecosystem services of the studied system. It covers the agroecology of the site (climate, soil), the components (tree species, crop system, livestock, management system) and key ecosystem services (provisioning, regulating and cultural) and the associated economic values. The data included in this report will also inform the modelling activities which help to address Objective 3.

## 2 Background

Out of the global annual production of 80 million tonnes of citrus fruit, 19 million tonnes come from the Mediterranean and 1.1 million tonnes from Greece. Greek production of citrus fruit originates from an area of about 50,000 ha (500,000 stremma). Of this, there are about 38,780 ha of oranges (ELSTAT, 2015), with the rest being tangerines, lemons and grapefruits. In Crete, citrus cultivation covers 4500 ha, comprising 3300 ha of oranges, 340 ha of tangerines, about 300 ha of lemons and 70 ha of grapefruits. Greece is the 17<sup>th</sup> of the 121 orange producing countries contributing 805,500 tonnes to the world total of 71.3 million tonnes (FAOSTAT 2013).

In the past, farmers in the Chania area of Crete cultivated crops between citrus trees after pollarding. They also used cypress trees as windbreaks to protect the citrus trees from wind. However most farmers have removed the cypress trees from the windbreaks, uprooted the citrus trees and replaced them with avocado monocultures for higher profit. Only a few farmers still use the agroforestry practice of growing citrus trees with intercrops. This practice can ensure an economic return each year, typically from vegetable intercrops, until the tree canopy fully develops. After full canopy development the inter-rows are sometimes used for poultry production.

Meetings of the "Intercropping of Orange Groves in Greece" stakeholder group were held on 2 August 2014, at which the group identified examples of interesting or best practices that involved the intercropping of orange trees for increased income and soil amelioration (Pantera 2014).

## 3 Update on field measurements

The objective of the trial was to produce quantitative information about the intercropping of orange trees with leguminous crops (chickpeas) or cereals. Vegetables (potatoes, watermelons and beans) are used as intercrops. Field measurements began in late June 2015 and continue to be conducted by the farmer. Originally the amount of chickpeas produced in the trials was measured. In

September and October 2015, the amount of oranges produced in the different sites was also measured.

## 4 Description of system

The physical characteristics of the study site are shown in Table 1. The system is focused on widely spaced orange trees that are 80 years old.

| General description of | f system                                                                                |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| Name of group          | Intercropping of orange groves in Greece                                                |  |  |  |
| Contact                | Anastasia Pantera and Maria Kasselaki                                                   |  |  |  |
| Work-package           | 3: High value trees                                                                     |  |  |  |
| Associated WP          | Use of agricultural crop                                                                |  |  |  |
| Geographical extent    | Intercropped orange groves are found in Greece, India with leguminous                   |  |  |  |
|                        | species (Lachungpa, 2004), USA with Lima beans (Fortier, 1940), Brazil with             |  |  |  |
|                        | vegetables or cotton (Smith et al. 1995).                                               |  |  |  |
| Estimated area         | 38,780 ha of orange groves (ELSTAT, 2015)                                               |  |  |  |
| Typical soil types     | Luvisols                                                                                |  |  |  |
| Description            | Orange groves are found in many areas of Greece. Citrus groves of orange,               |  |  |  |
|                        | tangerine and lemon trees are a characteristic land use system in Chania,               |  |  |  |
|                        | Crete, Greece. In the past, farmers used to cultivate crops in between citrus           |  |  |  |
|                        | trees but also after pollarding them to change variety. They also used cypress          |  |  |  |
|                        | trees as hedgerows to protect citrus trees from winds (as windbreaks).                  |  |  |  |
|                        | However nowadays many farmers have removed cypress trees from the                       |  |  |  |
|                        | hedgerows or have uprooted the citrus trees and switched to avocado                     |  |  |  |
|                        | monoculture for higher profit. Only a few farmers still practice agroforestry           |  |  |  |
|                        | as citrus trees typically with vegetable intercrops ensuring a steady economic          |  |  |  |
|                        | return each year until the tree crown fully develops and prevent any further            |  |  |  |
|                        | intercropping. Poultry production is sometimes practised after crown                    |  |  |  |
|                        | development.                                                                            |  |  |  |
| Tree species           | Orange (Citrus sinensis <sup>1</sup> )                                                  |  |  |  |
| Tree products          | Oranges for direct consumption and the production of orange juice. The                  |  |  |  |
|                        | present selling price for producers ranges from 0.17 to 0.20 euros per kilo,            |  |  |  |
|                        | which is considered insufficient to cover cultivation expenses. Capital controls        |  |  |  |
|                        | in Greece, due to the economic crisis, have negatively affected fruit exports           |  |  |  |
|                        | including oranges. Greece is the 17 <sup>th</sup> out of 121 orange producing countries |  |  |  |
|                        | contributing by 805,500 tonnes to the world total of 71.3 million tonnes                |  |  |  |
|                        | (FAOSTAT 2013).                                                                         |  |  |  |
| Crop species           | Chickpeas (Cicer arietinum) and potatoes (Solanum tuberosum)                            |  |  |  |
| Crop products          | Chickpeas and potatoes                                                                  |  |  |  |
| Other provisioning     | Possibility of using tree pruned branches as fodder, and eventually tree wood           |  |  |  |
| services               | as fuel wood.                                                                           |  |  |  |

Table 1. General description of the orange grove

<sup>&</sup>lt;sup>1</sup> Scientific names according to Euro+Med (2006-) and Flora Europaea (Tutin et al. 1968-1980)

|                      | Multiple products such as liqueurs, sweets, marmalades, and dried oranges        |  |  |
|----------------------|----------------------------------------------------------------------------------|--|--|
|                      | are produced and sold separately. Extracts used in pharmaceutical and            |  |  |
|                      | fragrance sector as well as in cooking and nutrition in general.                 |  |  |
|                      | Provide employment to rural areas, reduces urbanization.                         |  |  |
| Regulating services  | The trees reduce local wind speed and protect soils from erosion                 |  |  |
|                      | The chickpeas contribute to soil nitrogen content and reduce the demand for      |  |  |
|                      | chemical fertilizers.                                                            |  |  |
| Habitat services and | Multiple crops enhance biodiversity.                                             |  |  |
| biodiversity         |                                                                                  |  |  |
| Cultural services    | It is a traditional system. Every year numerous folklore festivals are organised |  |  |
|                      | promoting oranges and relevant old traditions.                                   |  |  |
| Key references       | See end of report                                                                |  |  |

## Table 2. Description of the specific case study system

| Site characteristics |                                                       |  |
|----------------------|-------------------------------------------------------|--|
| Area:                | 0.2 ha                                                |  |
| Co-ordinates:        | 35°25'50.31"N; 23°54'54.42 "E; 102 m a.s.l.           |  |
| Site contact:        | Maria Kasselaki, Anastasia Pantera                    |  |
| Site contact email   | kasselakis.skines@gmail.com                           |  |
| address              | pantera@teiste.gr                                     |  |
| Example photograph   |                                                       |  |
|                      | Figure 1. Intercropping of oranges near Chania. Crete |  |
|                      | Figure 1. Intercropping of oranges near Chania, Crete |  |



|                                        | 72 mg kg <sup>-1</sup> , Fe: 15 mg kg <sup>-1</sup> , Zn: 1.70 mg kg <sup>-1</sup> , Mn: 3.33 mg kg <sup>-1</sup> , Cu: 3.07 mg kg <sup>-1</sup> |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Aspect                                 | South                                                                                                                                            |  |  |
| Tree characteristics                   |                                                                                                                                                  |  |  |
| Species and variety                    | Orange (Citrus sinensis) Valencia                                                                                                                |  |  |
| Date of planning                       | 80 years ago                                                                                                                                     |  |  |
| Intra-row spacing                      | 10 m                                                                                                                                             |  |  |
| Inter-row spacing                      | 10 m                                                                                                                                             |  |  |
| Typical orange yield                   | 25 t ha <sup>-1</sup>                                                                                                                            |  |  |
| Typical increase in                    | To be confirmed                                                                                                                                  |  |  |
| tree biomass                           |                                                                                                                                                  |  |  |
| Crop/Understorey char                  | acteristics                                                                                                                                      |  |  |
| Species                                | Chickpeas (Cicer arietinum var Amorgos), Potatoes (Solanum tuberosum)                                                                            |  |  |
| Management                             | Conventional management with mowing, fertilization and pesticide spraying                                                                        |  |  |
| Typical crop yield                     | Chickpeas approximately 2 t ha <sup>-1</sup> , potatoes 40-50 t ha <sup>-1</sup>                                                                 |  |  |
| Financial and economic characteristics |                                                                                                                                                  |  |  |
| Indicative costs                       | One 50 kg bag of chickpeas costs about 100 euros                                                                                                 |  |  |
|                                        | Seed rate is about 150 kg ha <sup>-1</sup>                                                                                                       |  |  |
|                                        | One 25 kg bag potatoes costs about 26 euros                                                                                                      |  |  |
|                                        | Seed rate is about 2.0-2.5 t ha <sup>-1</sup>                                                                                                    |  |  |

## 5 Description of the tree component

## 5.1 Variety

Local farmers have switched from local to different orange varieties such as "Californian" types and lately to "faloforo" and "merlin". Presently "valencia" is the predominant variety mainly used for juice. It is favored for the rich orange color and flavor (Kimball et al. 2004). The harvest season for "Valencia" oranges lasts typically from March to the beginning of August. Orange trees for juice production are a cultivar combining a clonal rootstock to give the tree a particular growth habit, and a clonal scion that determines fruit quality.

## 5.2 Tree density and height

Most commercial orange orchards tend to be planted at densities of about 300-400 trees per hectare with a spacing 5 m x 5 m or 7.7 m x 5 m (Nanos, 2011). Due to the dense crowns this density limits intercropping. However, during the transition time from one variety to another performed by pollarding, there is the opportunity to cultivate a vegetable crop between the rows. Also, in traditional systems tree density is low with the trees being planted at densities of 10 m x 10 m. Tree height reaches 8 m.

## 5.3 Relationships between orange yield, and tree size, age and density

According to Wheaton et al. (1995), yield increases with increasing tree density during the early years of planting. However growth rate diminishes substantially above 1000 trees/ha and yield is independent of density at tree maturity. Tree spacing is considered to have only minor effects on fruit quality. Wheaton et al. (1995) also reports planting densities in the range of 350 to 1000 trees/ha in Florida, using lower densities for more vigorous combinations.

## 6 Trial design

## 6.1 Conceptual design and treatments

The trial design comprises three treatments (Table 3). These are: i) orange trees + chickpea, ii) orange trees + potatoes, and iii) orange trees alone as a control. There is no replication. The distance between the trees is 2 m.

#### Table 3. Description of the three treatments

| Treatment | Tree species | Understorey crop |
|-----------|--------------|------------------|
| 1         | Orange       | Chickpea         |
| 2         | Orange       | Potato           |
| 3         | Orange       | Control          |

Crop sowing was delayed due to the very rainy spring period and took place in the first week of April 2015 and will be repeated in spring 2016 and 2017.

## 7 Measurements

The planned measurements to be taken in the two treatments are described below (Table 4).

| Table 4. | Planned | measurements | at the site |
|----------|---------|--------------|-------------|
|----------|---------|--------------|-------------|

| Agroforestry    | Measurements                                                                                                    |                          |
|-----------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|
| component       |                                                                                                                 |                          |
| Tree            | Trees canopy inside each experimental plot.                                                                     | To be included           |
| characteristics | <ul> <li>Two diameters of tree canopy in a cross form will<br/>be measured for each tree in m.</li> </ul>       | To be included           |
|                 | Tree breast height diameter                                                                                     | To be included           |
|                 | <ul> <li>Leaves examined for their nutrient content (Five<br/>measurements are to be taken per tree)</li> </ul> | To be included           |
|                 | • The height to the base of the tree canopy                                                                     | To be included           |
|                 | and at the end of the trial)                                                                                    |                          |
|                 | <ul> <li>Weight and condition of the orange crop with<br/>intercrop</li> </ul>                                  | 6 t ha⁻¹                 |
|                 | • Weight and condition of the grange gran w/o                                                                   |                          |
|                 | intercrop                                                                                                       | 5 t ha⁻¹                 |
| Crop            | Total crop: chickpea with orange <sup>1</sup>                                                                   | 800 kg ha <sup>-1</sup>  |
| characteristics | Chickpea without oranges                                                                                        | 1300 kg ha⁻¹             |
|                 | <ul> <li>Potato yield will be measured at the end of the<br/>growing season</li> </ul>                          |                          |
|                 | (Crop sampling plots will include plots in close proximity                                                      |                          |
|                 | to the tree canopy and in the center between the tree                                                           |                          |
|                 | rows).                                                                                                          |                          |
| Soil            | Soil texture                                                                                                    | Sand 59.2%, silt 24.0%,  |
| characteristics |                                                                                                                 | clay 16.8%               |
|                 | Soil pH                                                                                                         | 6.52 (slightly acid)     |
|                 | Total CaCO <sub>3</sub>                                                                                         | 0.88 % (low)             |
|                 | Organic matter                                                                                                  | 2.41%                    |
|                 | Electrical conductivity                                                                                         | 0.245 dS m⁻¹             |
|                 | Nitrogen (nitrate)                                                                                              | 0.25 mg kg <sup>-1</sup> |

|                 | Phosphorus, P                                           | 0.80 mg kg <sup>-1</sup> |
|-----------------|---------------------------------------------------------|--------------------------|
|                 | Potassium, K                                            | 100 mg kg <sup>-1</sup>  |
|                 | Calcium, Ca                                             | 409 mg kg <sup>-1</sup>  |
|                 | Magnesium, Mg                                           | 72 mg kg <sup>-1</sup>   |
|                 | Iron, Fe                                                | 15 mg kg <sup>-1</sup>   |
|                 | Zinc, Zn                                                | 1.70 mg kg <sup>-1</sup> |
|                 | Manganese, Mn                                           | 3.33 mg kg⁻¹             |
|                 | Copper, Cu                                              | 3.07 mg kg⁻¹             |
| Management      | Tree damage from machinery operations                   | None                     |
| characteristics | Labour inputs                                           | 60 euros                 |
|                 | Dates of any field operations such as topping, spraying | 15 November 2015         |
|                 | and mowing                                              |                          |
|                 | Costs of sprays used                                    | 60 euros                 |
|                 | Cost of pruning                                         | 120 euros                |
|                 | Record of the dates, quantity, and types of fertilizer  | 100 euros for            |
|                 |                                                         | fertilizers              |

<sup>1</sup>Note that 2015 had a humid spring with high rainfall that negatively affected flowering and seed formation in chickpeas.

## 8 Acknowledgements

The AGFORWARD project (Grant Agreement N° 613520) is co-funded by the European Commission, Directorate General for Research & Innovation, within the 7th Framework Programme of RTD, Theme 2 - Biotechnologies, Agriculture & Food. The views and opinions expressed in this report are purely those of the writers and may not in any circumstances be regarded as stating an official position of the European Commission.

## 9 References

ELSTAT (2015). Annual Agricultural Statistical Survey of 2012. Hellenic Statistical Authority.

<u>http://www.statistics.gr/en/statistics/agr</u>, accessed 16 January 2016. Euro+Med (2006). Euro+Med PlantBase - the information resource for Euro-Mediterranean plant

diversity. Published on the Internet <u>http://ww2.bgbm.org/EuroPlusMed/</u>

FAOSTAT (2013). http://faostat3.fao.org/download/Q/QC/E, accessed 4 January 2016.

Fortier S (1940). Orchard Irrigation, USDA Farmer's Bulletin No 1518.

- Kimball D, Parish ME, Braddock R. (2004). Oranges and tangerines. In: Barrett DM, Somogyi LP, Ramaswamy HS (Eds). *Processing Fruits: Science and Technology*. 617-638. CRC Press: Boca Raton, FL, USA.
- Lachungpa K (2004). Intercropping of agri/horti crops with special reference to mandarin *(Citrus reticulata* Blanco) in Sikkim (INDIA). Proceedings of the 4<sup>th</sup> International Crop Science Congress <u>http://www.cropscience.org.au/icsc2004/poster/2/3/1954\_lachungpak.htm</u>

Nanos G (2011). Instructive notes of specialized arboriculture, http://www.agr.uth.gr/files/eid\_dendr1.pdf, accessed 17 January 2016

- Pantera A (2014). Initial Stakeholder Meeting Report Intercropping of Orange Groves in Greece. 18 November 2014. 7 pp. Available online: <u>http://www.agforward.eu/index.php/en/intercropping-of-orange-groves-in-greece.html</u>
- Smith N, Serrγo EAS, Alvim PT, Falesi IC (1995). Amazonia: Resiliency and Dynamism of the Land and its People. UNU Studies on Critical Environmental Regions, Kasperson JX, Kasperson RE, Turner II, BL (Eds), United Nations University Press, UNUP-906, Tokyo-New York-Paris

Wheaton TA, Whitney JD, Castle WS, Muraro RP, Browning HW, and Tucker DPH (1995). Citrus scion and rootstock, topping height, and tree spacing affect tree size, yield, fruit quality, and economic return. Journal of the American Society of Horticultural Science 120(5): 861-870.